Суетов А.А.

Кафедра офтальмологии Военно-медицинской академии им. С.М. Кирова, Санкт-Петербург

Алекперов С.И.

ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» МО РФ, ул. Лесопарковая, 4, Санкт-Петербург, 195043, Российская Федерация

Острое поражение органа зрения электромагнитным излучением сверхвысокочастотного диапазона (экспериментальное исследование)

Авторы:

Суетов А.А., Алекперов С.И.

Подробнее об авторах

Журнал: Вестник офтальмологии. 2019;135(4): 41‑49

Прочитано: 5729 раз


Как цитировать:

Суетов А.А., Алекперов С.И. Острое поражение органа зрения электромагнитным излучением сверхвысокочастотного диапазона (экспериментальное исследование). Вестник офтальмологии. 2019;135(4):41‑49.
Suetov AA, Alekperov SI. Acute ocular lesions after exposure to electromagnetic radiation of ultrahigh frequency (an experimental study). Russian Annals of Ophthalmology. 2019;135(4):41‑49. (In Russ.)
https://doi.org/10.17116/oftalma201913504141

Рекомендуем статьи по данной теме:
Изу­че­ние тем­пе­ра­тур­ных ус­ло­вий рос­та мик­ро­ор­га­низ­мов глаз­ной по­вер­хнос­ти в нор­ме и при ин­фек­ци­он­ных ке­ра­ти­тах. Вес­тник оф­таль­мо­ло­гии. 2024;(3):34-42
Срав­ни­тель­ная оцен­ка сос­то­яния ро­го­ви­цы пос­ле YAG-ла­зер­ных вме­ша­тельств на струк­ту­рах пе­ред­не­го сег­мен­та гла­за. Вес­тник оф­таль­мо­ло­гии. 2024;(4):17-25
Воз­мож­нос­ти кон­так­тной кор­рек­ции пос­ле ке­ра­топ­лас­ти­ки. Вес­тник оф­таль­мо­ло­гии. 2024;(4):98-103
Ди­на­ми­ка ин­тер­лей­ки­на-6 как мар­ке­ра ге­не­ра­ли­за­ции ин­фек­ции при раз­ви­тии не­она­таль­но­го сеп­си­са. Анес­те­зи­оло­гия и ре­ани­ма­то­ло­гия. 2024;(3):35-42
Осо­бен­нос­ти ло­каль­ной экспрес­сии ге­нов мРНК про- и про­ти­во­вос­па­ли­тель­ных ци­то­ки­нов при до­но­шен­ной бе­ре­мен­нос­ти. Рос­сий­ский вес­тник аку­ше­ра-ги­не­ко­ло­га. 2024;(3):6-13
Рас­простра­нен­ность те­ра­пев­ти­чес­ких за­бо­ле­ва­ний в за­ви­си­мос­ти от уров­ней ци­то­ки­нов/хе­мо­ки­нов у лю­дей в воз­рас­те до 45 лет. Про­фи­лак­ти­чес­кая ме­ди­ци­на. 2024;(7):46-52
Ин­ди­ка­то­ры ког­ни­тив­ных на­ру­ше­ний раз­лич­ной сте­пе­ни тя­жес­ти в ос­тром пе­ри­оде ише­ми­чес­ко­го ин­суль­та. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2024;(8-2):14-20
Оцен­ка ци­то­ки­но­во­го ста­ту­са у боль­ных с он­ко­ло­ги­чес­ки­ми за­бо­ле­ва­ни­ями и тя­же­лой фор­мой COVID-19. До­ка­за­тель­ная гас­тро­эн­те­ро­ло­гия. 2024;(3):60-66
При­ме­не­ние аль­ги­нат­ных плас­тин с ком­плек­сом про­ти­во­мик­роб­ных пеп­ти­дов и ци­то­ки­нов пос­ле хи­рур­ги­чес­ких вме­ша­тельств на тка­нях па­ро­дон­та как про­фи­лак­ти­ка ран­них пос­то­пе­ра­ци­он­ных ос­лож­не­ний. Сто­ма­то­ло­гия. 2024;(5):19-23
Ло­каль­ный ци­то­ки­но­вый про­филь эн­до­мет­рия у па­ци­ен­ток с пов­тор­ны­ми не­уда­ча­ми им­план­та­ции и его фар­ма­ко­ло­ги­чес­кая кор­рек­ция сек­ре­то­мом мо­но­нук­ле­аров пе­ри­фе­ри­чес­кой кро­ви. Проб­ле­мы реп­ро­дук­ции. 2024;(5):46-54

Поражение органа зрения электромагнитным излучением сверхвысокочастотного диапазона (ЭМИ СВЧ) встречается преимущественно как профессиональная патология у лиц, связанных с эксплуатацией различных устройств связи, являющихся источниками ЭМИ СВЧ (например, антенн, радаров, генераторов) [1]. Тем не менее использование различных источников ЭМИ СВЧ в повседневной жизни (например, беспроводных сетей, спутникового телевидения, радиосвязи, мобильных телефонов, бытовой техники), а также постоянное расширение спектра источников ЭМИ СВЧ, применяемых в быту и на производстве, диктуют необходимость исследования возможных неблагоприятных эффектов воздействия ЭМИ СВЧ на организм в целом и орган зрения в частности.

Наиболее известной формой поражения ЭМИ СВЧ органа зрения является СВЧ-индуцированная катаракта, формирование которой описано в результате как хронического облучения, так и однократного интенсивного воздействия ЭМИ СВЧ, при этом значение пороговой энергии для катарактогенеза варьирует в зависимости от продолжительности облучения [2—5].

В отличие от СВЧ-катаракты о других формах поражения органа зрения ЭМИ СВЧ известно меньше. Так, экспериментальные и клинические исследования охватывают преимущественно нетепловые (подпороговые) эффекты хронического воздействия ЭМИ СВЧ на структуры глаза; например, есть отдельные данные об изменениях в цилиарном теле и сетчатке после длительного воздействия ЭМИ СВЧ от аппаратов мобильной связи [6, 7]. Об эффектах теплового воздействия (надпорогового) на структуры глазного яблока (за исключением хрусталика) данных еще меньше. В частности, описаны случаи дистрофических изменений в роговице, развития ирита с нарушением целостности гематоофтальмического барьера [3, 8]. Суммарно данные о характере изменений, помимо катаракты, в структурах органа зрения на фоне непродолжительного высокоэнергетического (острого) воздействия ЭМИ СВЧ ограничены и чаще описываются как случайная находка. Тем не менее исследование характера возможных изменений в структурах органа зрения и условий их развития на фоне острого воздействия ЭМИ СВЧ может иметь важное значение для выбора тактики лечения при возможных острых поражениях источниками ЭМИ СВЧ.

Цель исследования — изучить клинические и морфологические проявления поражения органа зрения при остром воздействии СВЧ-излучения.

Материал и методы

Исследование было выполнено на 30 кроликах породы Шиншилла (масса 2—2,5 кг) в соответствии с международными рекомендациями по работе с лабораторными животными, Стокгольмской декларацией о гуманном обращении с лабораторными животными и одобрено локальным этическим комитетом ГНИИИ ВМ МО РФ.

Кролики случайным образом были разделены на 5 групп по 6 кроликов в зависимости от времени экспозиции СВЧ-излучения: 1-я группа — 15 с, 2-я группа — 30 с, 3-я — 45 с, 4-я — 60 с, 5-я — контроль.

Параметры воздействия электромагнитного излучения и схема эксперимента. Для генерации ЭМИ СВЧ использовали экспериментальную установку с выходными параметрами СВЧ-излучения: частота 3,97 ГГц (длина волны 7,55 см), плотность потока энергии 1,0 Вт/см2. Перед опытом животное фиксировали в станке и наркотизировали путем внутримышечного введения гексенала, затем перед правым глазом на расстоянии 20 см располагали излучатель и производили воздействие.

До и после облучения исследовали структуры переднего и заднего сегментов правого (облучаемого) и левого глаза с помощью щелевой лампы HSL-150 («Heine», Германия) и непрямого бинокулярного офтальмоскопа Omega 200 («Heine», Германия). Дополнительно для визуализации изменений глазной поверхности использовали тест-полоски с флюоресцеином и лиссаминовым зеленым. Через 12 ч после воздействия животных выводили из эксперимента путем передозировки наркоза (тиопентал натрия 100 мг/кг внутривенно), глазные яблоки энуклеировали, промывали в фосфатно-солевом буферном растворе (PBS) и вскрывали разрезом по линии экватора для извлечения хрусталика, при этом также рассекали стекловидное тело, сохраняя его основание в зоне цилиарного тела.

Исследуемые параметры. Все выявленные изменения глазной поверхности после воздействия классифицировали в соответствии с градацией: 0 — нет изменений, 1 — отдельные участки эрозии в роговице, отек стромы слабый или отсутствует, инъекция конъюнктивы слабая или отсутствует, 2 — эрозия достигает 50% площади роговицы, умеренный отек стромы, инъекция конъюнктивы, 3 — тотальная эрозия, умеренный или выраженный отек стромы, выраженная инъекция и хемоз конъюнктивы.

Степень помутнения хрусталика определяли при аутопсии по видимости сетки на бумаге, на которой располагали извлеченный хрусталик, в соответствии с градацией: 0 — прозрачный, 1 — легкое помутнение, линии сетки видны под флером, 2 — умеренное помутнение, линии сетки едва просматриваются, 3 — выраженное помутнение, линии сетки неразличимы (см. рис. 3 [9]).

Рис. 3. Индуцированная СВЧ-катаракта. а — примеры градации по степени и распределение в группах с различной экспозицией; б и в — морфологические признаки катаракты: вакуолизация эпителиоцитов хрусталика (указана черными стрелками), нарушение организации хрусталиковых волокон (указано синими стрелками).

После воздействия клеточную реакцию во влаге передней камеры (ПК) оценивали при биомикроскопии в соответствии с градацией от 0 до 4+ баллов Standardization of Uveitis Nomenclature (SUN) Working Group при положении осветителя под углом 50° и щели 1×1 мм [10]. При градации учитывали результаты морфологического исследования, особенно в случаях помутнения роговицы, не позволявшего провести биомикроскопическую оценку.

Иммуноферментный анализ (ИФА) провоспалительных цитокинов

При аутопсии у всех животных забирали образцы влаги ПК (0,1 мл) и стекловидного тела из зоны основания (0,2 мл). Из энуклеированного и отмытого в PBS глазного яблока до вскрытия брали влагу ПК с помощью стерильной иглы 30 G, стекловидного тела с помощью стерильной иглы 20 G, избегая контаминации инструментов и материала [11]. Полученные образцы собирали и хранили при –20 °С. В образцах методом ИФА с помощью наборов реактивов ProCon IL-1β, ProCon IL-6 и ProCon TNFα («Протеиновый контур», Россия) исследовали содержание провоспалительных цитокинов ИЛ-1β, ИЛ-6 и ФНОα в соответствии с инструкциями производителя. Сотрудники, исследовавшие содержание цитокинов, не имели данных о принадлежности проб к животному из какой-либо группы.

Морфологическое исследование. После осмотра макропрепаратов их фиксировали в 10% забуференном нейтральном растворе формалина в течение 24 ч, затем осуществляли гистологическую проводку по стандартному протоколу с заливкой в парафиноподобную среду Histomix («Биовитрум», Россия) и изготавливали срезы толщиной 4 мкм, которые окрашивали гематоксилином и эозином и исследовали под микроскопом Leica DM4000 («Leica», Австрия).

Статистический анализ. Анализ результатов производили в пакете программ Statistica 10.0 («StatSoft», Tulsa, СШA) с помощью непараметрических методов (U-критерий Манна—Уитни) статистической обработки данных. Результаты представлены в виде M±SD. Статистически достоверными считали результаты с уровнем значимости меньше 0,05.

Результаты

Изменения глазной поверхности. При экспозиции 30 с и выше наблюдали признаки повреждения роговицы подверженных воздействию правых глаз в форме частичной или тотальной эрозии с отеком стромы различной выраженности (рис. 1, а).

Рис. 1. Изменения глазной поверхности при воздействии электромагнитного излучения СВЧ-диапазона. а — внешний вид глазной поверхности при различной тяжести повреждения (с соответствующей градацией) и диаграмма с результатами в группах с разной экспозицией; б и в — морфологические изменения глазной поверхности: частичная или полная десквамация переднего эпителия (указано синими стрелками), отек стромы (указан красными стрелками), инфильтрация нейтрофилами и макрофагами (указана черными стрелками), белковый выпот в передней камере (указан зелеными стрелками). Здесь и на рис. 2—4: окраска гематоксилином и эозином.
Сравнение между показателями групп с экспозицией 45 и 60 с в соответствии с использованной градацией повреждений не выявило значимого отличия по частоте распределения повреждений. Морфологически изменения в роговице имели неспецифический вид: присутствовали признаки гидропической дистрофии и десквамации клеток переднего эпителия и эндотелия, в строме наблюдался тканевый отек с инфильтрацией полиморфно-ядерными нейтрофилами, а также мононуклеарными клетками и эозинофилами (см. рис. 1, б, в). Степень повреждения роговицы в целом коррелировала с временем экспозиции (r=0,84, p<0,05). Одновременно обследование глазной поверхности левого глаза подопытных животных не выявило каких-либо изменений.

Воспалительная реакция в передней камере глаза. Клеточную реакцию во влаге ПК наблюдали при воздействии в течение 30 с и более (рис. 2).

Рис. 2. Клеточная реакция в передней камере. На диаграмме — распределение в баллах в соответствии с градацией SUN [10] в группах с различной экспозицией; а и б — гипопион в передней камере (указан белой стрелкой); в — нейтрофилы и макрофаги в передней камере; г — отек и полнокровие радужки (указаны черными стрелками).
В 2 случаях с экспозицией 30 с клеточная реакция соответствовала степени 1+, в группах с экспозицией 45 и 60 с клеточная реакция варьировала от отсутствия до степени 4+ с гипопионом (см. рис. 2, а). При морфологическом исследовании воспалительные клетки с преобладанием нейтрофилов наблюдали как распределенные в ПК, так и расположенные по задней поверхности роговицы, в структурах угла ПК и поверхности радужки (см. рис. 2, б, в). Помимо клеток, в ПК присутствовал белковый выпот, располагавшийся по передней поверхности радужки и задней поверхности роговицы (см. рис. 1, б, в). Исследование радужки выявило полнокровие сосудов и тканевый отек (см. рис. 2, г). Суммарно клеточная реакция во влаге ПК облучаемого (правого) глаза после воздействия имела дозозависимый эффект (r=0,78, p<0,05). Клиническое и морфологическое исследование парного (левого) глаза у подопытных животных также показало наличие слабой клеточной реакции (1+) в 1 случае после 45 с и в 1 случае после 60 с воздействия.

Индуцированная СВЧ-катаракта. После воздействия наблюдали формирование СВЧ-индуцированной катаракты, при этом частота формирования и степень помутнения коррелировали с увеличением времени экспозиции (r=0,81, p<0,05) (рис. 3, а). Более выраженные помутнения значимо чаще выявлялись после экспозиции 45 и 60 с, хотя начальное помутнение (степень 1) развивалось в половине случаев после экспозиции СВЧ-поля 15 с, а значимое отличие по частоте и выраженности помутнения в сравнении с показателями контроля фиксировали после 30 с воздействия. Индуцированная катаракта характеризовалась элементами диффузного помутнения, вовлекающего все слои хрусталика, в некоторых случаях наблюдалась неравномерность помутнения с участками «молочного» помутнения в области экватора хрусталика. При морфологическом исследовании были выявлены признаки гидропической дистрофии эпителия хрусталика (см. рис. 3, б), вакуолизации и нарушения организации хрусталиковых волокон (см. рис. 3, в). На парном (левом) глазу также наблюдали формирование катаракты (по одному случаю со степенью помутнения 1 при экспозиции 45 и 60 с).

Морфологические изменения в заднем сегменте глаза. У животных с достаточной для офтальмоскопического исследования прозрачностью оптических сред после воздействия не было выявлено каких-либо изменений в структурах глазного дна. Морфологическое исследование также не обнаружило патологических изменений в сетчатке и зрительном нерве подопытных животных, в том числе в группе с экспозицией 60 с. При морфологическом исследовании на фоне клеточной реакции в ПК 3+ и 4+ у подопытных животных была выявлена инфильтрация нейтрофилами и мононуклеарными клетками в стекловидном теле в 2 случаях после экспозиции 45 и в 3 случаях после экспозиции 60 с (рис. 4).

Рис. 4. Клеточная реакция в стекловидном теле после экспозиции СВЧ-излучения. а — нейтрофилы и мононуклеарные клетки в стекловидном и в цилиарном теле (указаны черными стрелками) и экстравазально расположенные эритроциты (указаны синими стрелками); б — преретинально расположенные нейтрофилы и мононуклеарные клетки (указаны черными стрелками).
Клетки располагались практически полностью в зоне основания стекловидного тела и у отростков цилиарного тела, в котором также были заметны воспалительная инфильтрация, полнокровие сосудов и участки с выходом форменных элементов (кровоизлияния) в окружающие ткани (см. рис. 4, а). В эпителии цилиарных отростков обнаружены признаки гидропической дистрофии. В 2 случаях нейтрофилы и мононуклеарные клетки располагались преретинально в области экватора, но в подлежащей сетчатке не было зафиксировано грубых структурных нарушений (см. рис. 4, б). Исследование парных (левых) глаз не выявило каких-либо патологических изменений в структурах заднего сегмента глаза, включая животных с экспозицией 60 с.

Содержание провоспалительных цитокинов во влаге передней камеры и стекловидном теле

Содержание провоспалительных цитокинов во влаге передней камеры и стекловидном теле через 24 ч после экспозиции ЭМП СВЧ Примечание. * — p<0,05; ** — p<0,01; *** — p<0,001 при сравнении с показателями группы контроля.

Через 24 ч после воздействия при сравнении с данными группы контроля содержание цитокина ИЛ-1β во влаге ПК правого глаза было значимо выше в группе с экспозицией 45 и 60 с (14,26±8,92 (p<0,01) и 16,47±5,94 (p<0,001) пг/мл соответственно), а также в стекловидном теле в группе с экспозицией 60 с (10,79±5,42 пг/мл, p<0,05).

Содержание цитокина ИЛ-6 было значимо выше во влаге ПК правого глаза в группе с экспозицией 60 с (23,25±5,76 пг/мл, p<0,05) и в стекловидном теле у животных с экспозицией 45 и 60 с (16,14±8,18 (p<0,05) и 17,94±5,06 (p<0,001) пг/мл соответственно) в сравнении с показателями контроля.

Содержание цитокина ФНОα было значимо выше в группах с экспозицией 45 и 60 с во влаге ПК правого (облучаемого) глаза (22,26±8,74 и 26,83±7,89 пг/мл соответственно, p<0,01) и в стекловидном теле (17,30±8,67 и 21,48±8,60 пг/мл соответственно, p<0,01) в сравнении с показателями контроля.

В целом выявлена значимая корреляция между экспозицией в ПК и содержанием провоспалительных цитокинов ИЛ-1β, ИЛ-6 и ФНОα в ПК (соответственно r=0,79, r=0,58 и r=0,67, p<0,05), в стекловидном теле (соответственно r=0,48, r=0,69 и r=0,64, p<0,05).

Значимых различий в содержании исследуемых цитокинов в парном (левом) глазном яблоке в сравнении с данными группы контроля выявлено не было.

Обсуждение

Проведенное исследование было направлено на изучение возможных эффектов воздействия ЭМИ СВЧ на различные структуры органа зрения кроликов при однократном непродолжительном облучении с высоким уровнем энергии.

В соответствии с уровнем плотности потока энергии (ППЭ) принято выделять тепловые и нетепловые механизмы воздействия ЭМИ СВЧ на биологические ткани, при этом пограничной между ними считается ППЭ 10 мВт/см2 [3]. Изучение безопасности устройств-источников ЭМИ СВЧ (например, мобильных телефонов, холодильников, фенов) подразумевает главным образом исследование нетепловых эффектов хронического воздействия СВЧ-излучения. В то же время в условиях промышленного использования различных технических устройств, эксплуатации оборудования для связи, а также в быту человек может подвергаться острому интенсивному воздействию ЭМИ СВЧ. В эксперименте была использована ППЭ 1,0 Вт/см2, что в 100 раз выше указанного пограничного уровня; тем не менее полученные в эксперименте изменения в структурах глазного яблока возможны и при более низких значениях ППЭ при условии большего времени воздействия (свыше 1 мин).

Со стороны структур глазной поверхности в результате воздействия ЭМИ СВЧ наблюдались изменения в диапазоне от единичных эрозий и слабой конъюнктивальной инъекции до тотальной десквамации эпителия и эндотелия, выраженного отека с помутнением в роговице и хемозом. В отличие от термических ожогов поглощенная энергия с прогревом тканей при воздействии ЭМИ СВЧ распределяется не в соответствии с температурным градиентом от поверхности в глубину, а зависит от диэлектрических характеристик тканей и длины волны излучения [12]. Поэтому в ряде случаев в эксперименте на фоне относительно незначительного повреждения роговицы (единичные эрозии, слабый отек) наблюдались развитие катаракты, клеточная реакция в ПК и стекловидном теле, которые в случае термического ожога позволили бы отнести его к III—IV степени (тяжелый ожог, сопровождающийся характерными для него повреждениями глазной поверхности) [13].

В эксперименте использовали ЭМИ СВЧ с длиной волны 7,55 см (частота 3,97 ГГц), при этом ранее в исследованиях было установлено, что поверхностные ткани (кожа век, ткани глазной поверхности) поглощают вместе примерно 20—30% энергии, а остальная энергия обеспечивает нагрев более глубоких тканей, степень которого зависит от уровня кровоснабжения и скорости отведения тепла [3, 12]. В частности, воздействие ЭМИ СВЧ с частотой 5,8 ГГц при ППЭ 30 мВт/см2 повышает температуру кожи век на 0,48 °С, температуру роговицы на 0,7 °С, а повышение температуры в сетчатке составляет только 0,03—0,08 °С [3, 7]. Данное обстоятельство определило видимую в эксперименте разницу в степени повреждения роговицы, хрусталика, цилиарного тела и сетчатки.

Условия формирования СВЧ-катаракты ранее уже были исследованы в экспериментах на различных животных [14, 15]. Было установлено, что формирование СВЧ-катаракты в случае острого воздействия начинается при повышении температуры в ретролентальном пространстве свыше 41 °C, что достигается при ППЭ 100 мВт/см2 в течение 1 ч. В условиях проводимого эксперимента ППЭ была заведомо выше, обеспечивая нагрев ткани в более короткие сроки, при этом катарактогенез в диапазоне экспозиции 15—60 с имел дозозависимый эффект. При экспозиции 15 с воздействие ЭМИ СВЧ с ППЭ 1 Вт/см2 в половине случаев приводило к формированию начальных помутнений, захватывающих не только капсулу и субкапсулярные слои, но и кортикальные слои, что отличало наблюдаемые в опыте катаракты от описанных в литературе СВЧ-катаракт при хроническом облучении.

Краткосрочный избыточный нагрев тканей глазного яблока сопровождался компенсаторными реакциями в форме увеличения теплоотдачи с циркулирующей кровью, что морфологически отражалось в форме полнокровия сосудов в радужке, цилиарном теле и сосудистой оболочке [16]. Тем не менее белковый выпот и выход клеток в экстравазальное пространство (в том числе клеточная реакция в ПК) свидетельствовали о том, что избыточный нагрев привел к нарушению сосудистой проницаемости и повреждению структур гематоофтальмического барьера. С другой стороны, преобладание среди клеток нейтрофилов, а также увеличение концентрации провоспалительных цитокинов могут свидетельствовать о том, что изменение сосудистой проницаемости могло быть вторичным, как одна из реакций в СВЧ-индуцированном воспалительном процессе в поврежденных тканях. Важно, что между интенсивностью клеточной реакции, содержанием цитокинов и временем экспозиции была выявлена значимая положительная корреляция. Возможно, хроническое воздействие ЭМИ СВЧ с более низкой ППЭ (в режиме теплового воздействия, близкого к пороговому) также может через определенное время экспозиции вести к изменениям в функционировании гематоофтальмического барьера.

Клиническое и морфологическое исследования сетчатки и зрительного нерва не выявило каких-либо значимых признаков термического повреждения, что, как указано ранее, могло быть обусловлено достаточным отведением тепла сосудистой оболочкой. В то же время неспецифическое клеточное повреждение (ранние этапы декомпенсации клеточного метаболизма и запуска механизмов апоптоза) могло быть не идентифицировано спустя 1 сут после воздействия [17]. В доступных источниках литературы не было найдено каких-либо сведений об отсроченных эффектах острого воздействия ЭМИ СВЧ на сетчатку, поэтому данные вопросы могут представлять интерес для дальнейшего изучения.

В работе были исследованы уровни цитокинов, играющих важную роль в индукции процессов воспаления, — ИЛ-1β, ИЛ-6 и ФНОα во влаге передней камеры и стекловидном теле. Известно, что их содержание повышается в ответ на повреждение клеток при травмах, ожогах и различных заболеваниях [18, 19]. Но нет каких-либо данных о том, как изменяется уровень цитокинов в стекловидном теле при повреждении структур переднего сегмента глаза. Данное исследование показало, что между степенью повреждений, экспозицией излучения и уровнем провоспалительных цитокинов как в ПК, так и в стекловидном теле есть значимая прямая положительная корреляция; при этом даже в случаях слабого повреждения было зафиксировано увеличение содержания ИЛ-1β и ФНОα в стекловидном теле, что может свидетельствовать о субклиническом повреждении структур глаза. Тем не менее наблюдаемые более высокие значения уровня цитокинов в стекловидном теле в опытных группах могли быть обусловлены не столько повреждением клеток сетчатки, сколько реакцией цилиарного тела с проникновением в стекловидное тело клеток, являющихся основными источниками продукции исследуемых цитокинов.

При облучении ЭМИ СВЧ были выявлены отдельные случаи изменений не только в экспонируемом глазном яблоке, но и в парном (случаи начальных помутнений хрусталика и клеток в ПК при более длительных экспозициях). С учетом того что использованное ЭМИ СВЧ с длиной волны 7,55 см (частота 3,97 ГГц) может проникать на глубину до 4—5 см, а также малого количества выявленных случаев изменений в парном глазном яблоке, делать вывод, что найденные при исследовании изменения были вызваны именно воздействием СВЧ-излучения, не представляется возможным. Хотя не исключено, что используемая ППЭ 1,0 Вт/см2 при достаточном времени экспозиции могла спровоцировать наблюдаемые изменения.

Таким образом, проведенное исследование показало, что при воздействии на орган зрения ЭМИ СВЧ с ППЭ 1,0 Вт/см2 развиваются дозозависимые эффекты не только в хрусталике, но и в других структурах органа зрения, при этом нарушается целостность гематоофтальмического барьера, а в воспалительный процесс вовлекаются структуры как переднего, так и заднего сегмента глаза.

Участие авторов:

Концепция и дизайн исследования: А.С., С.А.

Сбор и обработка материала: С.А., А.С.

Статистическая обработка: А.С.

Написание текста: А.С.

Редактирование: С.А.

Авторы заявляют об отсутствии конфликта интересов.

The authors declare no conflicts of interest.

Сведения об авторах

Суетов А.А. — канд. мед. наук, ст. науч. сотр. НИИЦ МБЗ ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» МО РФ; e-mail: ophtalm@mail.ru; https://orcid.org/0000-0002-8670-2964

Алекперов С.И. — канд. мед. наук, начальник отдела НИИЦ МБЗ ФГБУ «Государственный научно-исследовательский испытательный институт военной медицины» МО РФ; e-mail: salekperov@rambler.ru; https://orcid.org/0000-0002-1612-8100

Автор, ответственный за переписку: Суетов Алексей Александрович — e-mail: ophtalm@mail.ru; https://orcid.org/0000-0002-8670-2964

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.